A245972 Tower of 5s mod n.
0, 1, 2, 1, 0, 5, 3, 5, 2, 5, 1, 5, 5, 3, 5, 5, 14, 11, 6, 5, 17, 1, 5, 5, 0, 5, 2, 17, 9, 5, 25, 21, 23, 31, 10, 29, 35, 25, 5, 5, 9, 17, 28, 1, 20, 5, 23, 5, 45, 25, 14, 5, 51, 29, 45, 45, 44, 9, 48, 5, 14, 25, 38, 53, 5, 23, 5, 65, 5, 45, 1, 29, 34, 35, 50
Offset: 1
Examples
a(2) = 1, as 5^X is odd for any whole number X. a(19) = 6, as 5^(5^5) == 5^(5^(5^5)) == 5^(5^(5^(5^5))) == 6 (mod 19).
Links
- Wayne VanWeerthuizen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= proc(n) option remember; 5 &^ A(numtheory:-phi(n)) mod n end proc: A(2):= 1; seq(A(n), n=2..100);
-
Mathematica
a[n_] := a[n] = PowerMod[5, If[n <= 18, 5, a[EulerPhi[n]]], n]; Array[a, 100] (* Jean-François Alcover, Jul 25 2022 *)
-
Sage
def a(n): if ( n <= 18 ): return 3125%n else: return power_mod(5,a(euler_phi(n)),n)
Formula
a(n) = 5^a(A000010(n)) mod n. For n<=18, a(n)=(5^5) mod n.
Comments