A245974 Tower of 7's mod n.
0, 1, 1, 3, 3, 1, 0, 7, 7, 3, 2, 7, 6, 7, 13, 7, 12, 7, 7, 3, 7, 13, 20, 7, 18, 19, 16, 7, 1, 13, 19, 23, 13, 29, 28, 7, 34, 7, 19, 23, 26, 7, 7, 35, 43, 43, 37, 7, 0, 43, 46, 19, 11, 43, 13, 7, 7, 1, 7, 43, 6, 19, 7, 55, 58, 13, 63, 63, 43, 63, 66, 7, 30
Offset: 1
Examples
a(2) = 1, as 7^X is odd for any whole number X. a(11) = 2, as 7^(7^7) == 7^(7^(7^7)) == 7^(7^(7^(7^7))) == 2 (mod 11).
Links
- Wayne VanWeerthuizen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= proc(n) option remember; 7 &^ A(numtheory:-phi(n)) mod n end proc: A(2):= 1; seq(A(n), n=2..100);
-
Mathematica
a[n_] := a[n] = Switch[n, 1, 0, 2, 1, _, 7^a[EulerPhi[n]]]~Mod~n; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Sep 21 2022 *)
-
Sage
def a(n): if ( n <= 10 ): return 823543%n else: return power_mod(7,a(euler_phi(n)),n)
Formula
a(n) = 7^a(A000010(n)) mod n. For n <= 10, a(n) = (7^7) mod n.
Comments