This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245975 #10 Aug 21 2014 17:55:40 %S A245975 2,7,0,2,9,3,8,3,5,8,0,2,2,5,1,0,2,9,4,4,4,5,0,5,0,9,7,4,6,9,3,0,0,3, %T A245975 7,3,4,5,3,2,7,0,3,1,5,2,9,0,9,2,3,1,2,2,1,4,0,1,4,1,2,0,0,0,3,0,7,7, %U A245975 4,6,9,8,3,7,2,6,6,4,8,0,2,7,0,3,5,5 %N A245975 Decimal expansion of the number whose continued fraction is the (2,1)-version of the infinite Fibonacci word A014675. %C A245975 The (2,1)-version of the infinite Fibonacci word, A014675, as a sequence, is (2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,...); see Example. %e A245975 [2,1,2,2,1,2,1,2,2,...] = 2.702938358022510294445050974693003734532... %t A245975 z = 300; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; (* A014675 *) %t A245975 x1 = N[FromContinuedFraction[s], 100] %t A245975 r1 = RealDigits[x1, 10] (* A245975 *) %t A245975 ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; %t A245975 cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; %t A245975 rcf = Last[Map[Reverse, cfs]] (* A245920 *) %t A245975 x2 = N[FromContinuedFraction[rcf], z] %t A245975 r2 = RealDigits[x2, 10] (* A245976 *) %Y A245975 Cf. A014675, A245976. %K A245975 nonn,cons %O A245975 1,1 %A A245975 _Clark Kimberling_ and _Peter J. C. Moses_, Aug 08 2014