A245976 Decimal expansion of the number whose continued fraction is given by A245920 (limit-reverse of an infinite Fibonacci word).
2, 7, 2, 9, 9, 4, 4, 1, 9, 4, 7, 6, 7, 8, 5, 0, 2, 2, 9, 0, 7, 8, 3, 7, 4, 3, 0, 7, 0, 0, 5, 9, 9, 8, 1, 6, 7, 3, 8, 1, 8, 8, 7, 0, 1, 6, 4, 0, 5, 2, 5, 8, 0, 2, 0, 4, 9, 2, 7, 5, 4, 1, 0, 1, 9, 9, 6, 3, 3, 6, 2, 4, 3, 4, 5, 7, 7, 8, 6, 7, 1, 3, 1, 1, 6, 8
Offset: 1
Examples
[2,1,2,1,2,2,1,2,1,2,...] = 2.72994419476785022907837430700599816738...
Programs
-
Mathematica
z = 300; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; (* A014675 *) x1 = N[FromContinuedFraction[s], 100] r1 = RealDigits[x1, 10] (* A245975 *) ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]] (* A245920 *) x2 = N[FromContinuedFraction[rcf], z] r2 = RealDigits[x2, 10] (* this sequence *)
Comments