A245978 Index sequence for limit-reversing the infinite Fibonacci word A014675 = (s(0),s(1),...) = (2,1,2,2,1,2,1,2,...) using initial block (s(2),s(3)) = (2,2).
3, 8, 11, 16, 21, 29, 37, 42, 50, 63, 71, 84, 92, 105, 118, 126, 139, 152, 173, 194, 207, 228, 249, 262, 283, 296, 317, 338, 351, 372, 406, 427, 461, 482, 516, 550, 571, 605, 626, 660, 694, 715, 749, 783, 804, 838, 859, 893, 927, 948, 982, 1016, 1071, 1126
Offset: 0
Keywords
Examples
S = the infinite Fibonacci word A014675, with B = (s(2), s(3)); that is, (m,k) = (2,3) S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...) B'(0) = (2,2) B'(1) = (2,2,1) B'(2) = (2,2,1,2) B'(3) = (2,2,1,2,1) B'(4) = (2,2,1,2,1,2) B'(5) = (2,2,1,2,1,2,2) S* = (2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,...), with index sequence (3,8,11,16,21,29,...)
Programs
-
Mathematica
z = 140; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[3]], s[[4]]}]; (* Initial block is (s(3),s(4)) [OR (s(2),s(3)) if using offset 0] *) cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; q = Join[{3}, Rest[Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]]]] (* A245978 *) q1 = Differences[q] (* A245979 *)
Comments