This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245982 #4 Aug 09 2014 11:44:42 %S A245982 1,1,6,87,2200,159245,22460976,3841485235,725338311552, %T A245982 150719206127769,35342379764876800,9829163373723941951, %U A245982 3429714088052022223872,1523614487096970692512933,823050850772773045911871488,507838824721407879972472444875 %N A245982 Number of pairs of endofunctions f, g on [n] satisfying g^5(f(i)) = f(i) for all i in [n]. %H A245982 Alois P. Heinz, <a href="/A245982/b245982.txt">Table of n, a(n) for n = 0..100</a> %p A245982 with(combinat): M:=multinomial: %p A245982 b:= proc(n, k) local l, g; l, g:= [1, 5], %p A245982 proc(k, m, i, t) option remember; local d, j; d:= l[i]; %p A245982 `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!* %p A245982 (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, %p A245982 `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), %p A245982 `if`(t=0, [][], m/t)))) %p A245982 end; g(k, n-k, nops(l), 0) %p A245982 end: %p A245982 a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n): %p A245982 seq(a(n), n=0..20); %Y A245982 Column k=5 of A245980. %K A245982 nonn %O A245982 0,3 %A A245982 _Alois P. Heinz_, Aug 08 2014