This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245987 #4 Aug 09 2014 12:46:26 %S A245987 1,1,10,213,8056,540945,55791936,7976641981,1469902760320, %T A245987 332703236420577,93998774487116800,34310097895273565541, %U A245987 16097501586129903138816,9217140995822760715385905,6076268404868213191347785728,4448129862114255651329796526125 %N A245987 Number of pairs of endofunctions f, g on [n] satisfying g^10(f(i)) = f(i) for all i in [n]. %H A245987 Alois P. Heinz, <a href="/A245987/b245987.txt">Table of n, a(n) for n = 0..100</a> %p A245987 with(combinat): M:=multinomial: %p A245987 b:= proc(n, k) local l, g; l, g:= [1, 2, 5, 10], %p A245987 proc(k, m, i, t) option remember; local d, j; d:= l[i]; %p A245987 `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!* %p A245987 (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, %p A245987 `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), %p A245987 `if`(t=0, [][], m/t)))) %p A245987 end; g(k, n-k, nops(l), 0) %p A245987 end: %p A245987 a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n): %p A245987 seq(a(n), n=0..20); %Y A245987 Column k=10 of A245980. %K A245987 nonn %O A245987 0,3 %A A245987 _Alois P. Heinz_, Aug 08 2014