cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245990 Number of length n+2 0..3 arrays with no pair in any consecutive three terms totalling exactly 3.

Original entry on oeis.org

28, 68, 164, 396, 956, 2308, 5572, 13452, 32476, 78404, 189284, 456972, 1103228, 2663428, 6430084, 15523596, 37477276, 90478148, 218433572, 527345292, 1273124156, 3073593604, 7420311364, 17914216332, 43248744028, 104411704388
Offset: 1

Views

Author

R. H. Hardin, Aug 09 2014

Keywords

Examples

			Some solutions for n=10:
  3  2  1  1  2  1  1  2  0  2  3  0  1  3  3  0
  3  2  1  0  2  3  0  2  2  3  2  0  3  1  2  2
  3  3  3  0  3  1  0  2  0  2  2  0  1  1  2  0
  3  2  1  1  3  1  0  2  0  3  2  1  3  3  3  2
  3  3  1  1  1  1  0  0  0  3  0  1  1  1  3  2
  2  3  0  0  3  3  2  2  1  2  2  1  1  3  2  2
  2  2  1  0  1  1  2  2  1  3  0  1  1  3  2  2
  2  3  1  1  3  3  3  2  1  3  2  0  3  3  3  0
  3  3  1  1  3  1  3  2  3  3  0  0  1  2  2  0
  2  1  0  3  3  1  2  3  3  2  2  0  1  3  2  1
  3  1  0  1  3  0  3  3  2  2  2  0  0  3  3  1
  2  0  1  3  3  0  2  1  3  0  3  1  0  1  2  3
		

Crossrefs

Column 3 of A245995.
Essentially 4 times A001333.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: 4*x*(7 + 3*x) / (1 - 2*x - x^2).
a(n) = sqrt(2)*((1-sqrt(2))^n*(-4+3*sqrt(2)) + (1+sqrt(2))^n*(4+3*sqrt(2))).
(End)