A245995 T(n,k)=Number of length n+2 0..k arrays with no pair in any consecutive three terms totalling exactly k.
2, 8, 2, 28, 12, 2, 64, 68, 18, 2, 126, 208, 164, 26, 2, 216, 534, 676, 396, 38, 2, 344, 1116, 2262, 2196, 956, 56, 2, 512, 2120, 5766, 9582, 7132, 2308, 82, 2, 730, 3648, 13064, 29790, 40590, 23168, 5572, 120, 2, 1000, 5930, 25992, 80504, 153906, 171942, 75260
Offset: 1
Examples
Some solutions for n=5 k=4 ..3....0....4....0....0....4....2....1....0....1....1....3....4....1....3....2 ..3....0....3....0....2....1....3....2....3....4....4....3....4....1....4....4 ..3....3....2....0....0....2....3....0....0....4....4....4....3....0....2....4 ..3....2....3....0....1....0....2....1....3....2....4....3....4....0....4....4 ..2....4....0....2....0....3....0....0....2....1....3....4....2....1....3....4 ..4....4....3....0....1....3....1....2....0....0....4....2....1....0....2....4 ..1....1....0....0....2....2....1....3....0....2....3....4....1....1....0....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-3)
k=3: a(n) = 2*a(n-1) +a(n-2)
k=4: a(n) = 2*a(n-1) +a(n-2) +9*a(n-3) +3*a(n-4)
k=5: a(n) = 4*a(n-1) +a(n-2)
k=6: a(n) = 4*a(n-1) +a(n-2) +25*a(n-3) +5*a(n-4)
k=7: a(n) = 6*a(n-1) +a(n-2)
k=8: a(n) = 6*a(n-1) +a(n-2) +49*a(n-3) +7*a(n-4)
k=9: a(n) = 8*a(n-1) +a(n-2)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=2: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=4: [order 11]
n=5: [order 13]
n=6: [order 15]
n=7: [order 17]
Comments