cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245995 T(n,k)=Number of length n+2 0..k arrays with no pair in any consecutive three terms totalling exactly k.

Original entry on oeis.org

2, 8, 2, 28, 12, 2, 64, 68, 18, 2, 126, 208, 164, 26, 2, 216, 534, 676, 396, 38, 2, 344, 1116, 2262, 2196, 956, 56, 2, 512, 2120, 5766, 9582, 7132, 2308, 82, 2, 730, 3648, 13064, 29790, 40590, 23168, 5572, 120, 2, 1000, 5930, 25992, 80504, 153906, 171942, 75260
Offset: 1

Views

Author

R. H. Hardin, Aug 09 2014

Keywords

Comments

Table starts
.2...8....28......64......126.......216........344.........512..........730
.2..12....68.....208......534......1116.......2120........3648.........5930
.2..18...164.....676.....2262......5766......13064.......25992........48170
.2..26...396....2196.....9582.....29790......80504......185192.......391290
.2..38...956....7132....40590....153906.....496088.....1319480......3178490
.2..56..2308...23168...171942....795144....3057032.....9401216.....25819210
.2..82..5572...75260...728358...4108062...18838280....66983128....209732170
.2.120.13452..244464..3085374..21223992..116086712...477250848...1703676570
.2.176.32476..794096.13069854.109652160..715358552..3400384160..13839144730
.2.258.78404.2579500.55364790.566509902.4408238024.24227537592.112416834410

Examples

			Some solutions for n=5 k=4
..3....0....4....0....0....4....2....1....0....1....1....3....4....1....3....2
..3....0....3....0....2....1....3....2....3....4....4....3....4....1....4....4
..3....3....2....0....0....2....3....0....0....4....4....4....3....0....2....4
..3....2....3....0....1....0....2....1....3....2....4....3....4....0....4....4
..2....4....0....2....0....3....0....0....2....1....3....4....2....1....3....4
..4....4....3....0....1....3....1....2....0....0....4....2....1....0....2....4
..1....1....0....0....2....2....1....3....0....2....3....4....1....1....0....3
		

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-3)
k=3: a(n) = 2*a(n-1) +a(n-2)
k=4: a(n) = 2*a(n-1) +a(n-2) +9*a(n-3) +3*a(n-4)
k=5: a(n) = 4*a(n-1) +a(n-2)
k=6: a(n) = 4*a(n-1) +a(n-2) +25*a(n-3) +5*a(n-4)
k=7: a(n) = 6*a(n-1) +a(n-2)
k=8: a(n) = 6*a(n-1) +a(n-2) +49*a(n-3) +7*a(n-4)
k=9: a(n) = 8*a(n-1) +a(n-2)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=2: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=4: [order 11]
n=5: [order 13]
n=6: [order 15]
n=7: [order 17]