This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245996 #21 Jan 11 2022 08:26:18 %S A245996 2,8,28,64,126,216,344,512,730,1000,1332,1728,2198,2744,3376,4096, %T A245996 4914,5832,6860,8000,9262,10648,12168,13824,15626,17576,19684,21952, %U A245996 24390,27000,29792,32768,35938,39304,42876,46656,50654,54872,59320,64000,68922 %N A245996 Number of length 1+2 0..n arrays with no pair in any consecutive three terms totaling exactly n. %C A245996 From _Pontus von Brömssen_, Jan 10 2022: (Start) %C A245996 Proof of the empirical observations in the Formula section: %C A245996 For k = 1, 2, 3, let N_k be the number of triples (x, y, z) with x, y, and z in 0..n, that satisfy x+y = n (if k=1), x+y = y+z = n (if k=2), or x+y = y+z = z+x = n (if k=3). %C A245996 By inclusion-exclusion (and symmetry between x, y, and z), a(n) = (n+1)^3 - 3*N_1 + 3*N_2 - N_3. The unique solution to x+y = y+z = z+x = n is x = y = z = n/2, so N_3 = 1 if n is even, otherwise N_3 = 0. We write this as N_3 = [n even]. It is easily seen that N_1 = (n+1)^2 (x and z can be chosen freely and y = n-x) and that N_2 = n+1 (y can be chosen freely and x = z = n-y), so a(n) = (n+1)^3 - 3*(n+1)^2 + 3*(n+1) - [n even] = n^3 + [n odd] = 2*ceiling(n^3/2) = 2*A036486(n). %C A245996 The recurrence and the generating function follow from this. (End) %H A245996 R. H. Hardin, <a href="/A245996/b245996.txt">Table of n, a(n) for n = 1..210</a> %H A245996 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A245996 Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). %F A245996 From _R. J. Mathar_, Aug 10 2014: (Start) %F A245996 Empirical: a(n) = 2*A036486(n). %F A245996 G.f.: 2*x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). (End) %e A245996 Some solutions for n=10: %e A245996 6 9 5 8 0 5 8 6 9 8 5 0 4 8 5 2 %e A245996 3 8 3 0 0 7 9 5 0 4 7 5 2 4 7 6 %e A245996 6 9 6 9 5 9 7 3 7 4 1 7 10 0 2 6 %Y A245996 Row 1 of A245995. %Y A245996 Cf. A036486. %K A245996 nonn %O A245996 1,1 %A A245996 _R. H. Hardin_, Aug 09 2014