A245999 Number of length 4+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.
2, 26, 396, 2196, 9582, 29790, 80504, 185192, 391290, 753570, 1371972, 2352636, 3877286, 6128486, 9405552, 13997520, 20363634, 28934442, 40377980, 55306340, 74651742, 99252846, 130367976, 169112376, 217138922, 275894450, 347501364
Offset: 1
Keywords
Examples
Some solutions for n=8 ..1....2....1....3....2....0....0....1....1....0....4....0....2....5....5....3 ..4....7....3....2....0....2....2....5....1....7....1....2....2....2....2....7 ..5....5....4....1....7....1....5....5....5....6....6....3....7....1....5....7 ..6....5....1....4....2....8....4....7....8....5....3....4....7....8....7....5 ..8....0....5....0....2....1....8....7....4....4....6....1....4....5....0....2 ..4....1....6....1....7....8....7....4....6....7....1....1....7....5....6....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A245995.
Formula
Empirical: a(n) = 3*a(n-1) +a(n-2) -11*a(n-3) +6*a(n-4) +14*a(n-5) -14*a(n-6) -6*a(n-7) +11*a(n-8) -a(n-9) -3*a(n-10) +a(n-11).
Empirical: G.f.: -2*x*(1 +10*x +158*x^2 +502*x^3 +1436*x^4 +1510*x^5 +1498*x^6 +474*x^7 +171*x^8) / ( (1+x)^4*(x-1)^7 ). - R. J. Mathar, Aug 10 2014
Comments