A246001 Number of length 6+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.
2, 56, 2308, 23168, 171942, 795144, 3057032, 9401216, 25819210, 62402840, 139927692, 288998016, 566057198, 1047126248, 1862251792, 3175741184, 5253738642, 8416795896, 13163097620, 20070807680, 30009814582, 43960191176
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0....4....3....3....0....1....0....0....4....1....4....3....0....0....4....1 ..3....4....3....0....4....0....4....1....3....1....4....3....3....3....0....1 ..3....5....0....0....3....0....4....3....5....0....2....1....1....4....0....1 ..4....5....3....2....0....3....0....1....5....0....2....3....1....3....0....0 ..4....1....1....0....4....4....3....3....4....3....0....3....2....3....1....0 ..3....1....0....1....4....0....1....1....3....3....2....5....0....5....0....4 ..5....1....0....1....0....2....3....1....3....3....2....5....1....1....0....3 ..5....2....3....0....2....0....0....3....1....0....0....3....3....5....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A245995.
Formula
Empirical: a(n) = 3*a(n-1) +3*a(n-2) -17*a(n-3) +3*a(n-4) +39*a(n-5) -25*a(n-6) -45*a(n-7) +45*a(n-8) +25*a(n-9) -39*a(n-10) -3*a(n-11) +17*a(n-12) -3*a(n-13) -3*a(n-14) +a(n-15).
Comments