cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246006 a(2n) = numerator of |Bernoulli(2n)|, a(2n+1) = Euler(2n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 5, 50521, 691, 2702765, 7, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 854513, 69348874393137901, 236364091, 15514534163557086905, 8553103, 4087072509293123892361, 23749461029, 1252259641403629865468285
Offset: 0

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Primes p which divide at least one a(n) for n<=p-2 are called weakly-irregular primes. For example, 19|a(11), 31|a(23), 37|a(32), 43|a(13), 47|a(15), 59|a(44), 61|a(7), ... - Eric Chen, Nov 26 2014
The weakly-irregular primes below 500 are 19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491. - Eric Chen, Nov 26 2014
A prime can divide more than one a(n) for n<=p-2; for example, 67 divides both a(27) and a(58); additional examples are 101, 149, 157, 241, 263, 307, 311, ... . - Eric Chen, Nov 26 2014
Smallest values of k such that the n-th weakly-irregular prime divides a(k) are 11, 23, 32, 13, 15, 44, 7, 27, 29, 19, 63, 24, 22, 43, 129, 130, 62, 75, ... . - Eric Chen, Nov 26 2014
Smallest prime factors (>= n+2) of a(n) are 1, 1, 1, 1, 1, 1, 1, 61, 1, 277, 1, 19, 691, 43, 1, 47, 3617, 228135437, 43867, 79, 283, 41737, 131, 31, 103, 2137, 657931, 67, 9349, 71, ... . - Eric Chen, Nov 26 2014
The irregular pairs are (61, 7), (277, 9), (19, 11), (2659, 11), (691, 12), (43, 13), (967, 13), (47, 15), (4241723, 15), (3617, 16), (228135437, 17), (43867, 18), (79, 19), (349, 19), (84224971, 19), ... . - Eric Chen, Nov 26 2014

Examples

			Euler(10) = 50521, so a(11) = 50521.
Bernoulli(12) = 691/2730, so a(12) = 691.
		

Crossrefs

Programs

  • Mathematica
    a246006[n_] := If[EvenQ[n], Abs[Numerator[BernoulliB[n]]], Abs[EulerE[n-1]]]; Table[a246006[n], {n, 0, 99}]
  • Python
    from sympy import euler, bernoulli
    def A246006(n): return abs(euler(n-1)) if n&1 else abs(bernoulli(n)).p # Chai Wah Wu, Apr 15 2023