A246007 Length of pseudo-Collatz cycles '3*n - 1' of prime numbers.
2, 5, 3, 6, 7, 7, 19, 5, 4, 11, 7, 15, 10, 9, 14, 17, 12, 8, 21, 20, 16, 15, 11, 33, 36, 36, 18, 10, 14, 31, 26, 22, 21, 13, 26, 34, 16, 12, 21, 42, 25, 16, 16, 37, 20, 29, 19, 24, 32, 90, 28, 28, 19, 19, 85, 23, 40, 14, 36, 27, 22, 49, 17, 31, 31, 40, 13, 44, 43, 26, 66, 43, 25, 25, 25, 30, 21, 30, 30, 51, 20, 25, 25, 33, 47, 16, 47, 91, 46, 46, 29, 46, 28
Offset: 1
Keywords
Examples
a(1) = {c(1) = prime(1) = 2, 2 mod 2 = 0, c(2) = 2/2 = 1, z=2} = 2. Table for cases (1) and (2): case (1) c(1) = prime(2) = 3 z 1 2 3 4 5 c(z) 3 8 4 2 1 a(2) = 5 c(1) = prime(3) = 5 z 1 2 3 c(z) 5 14 7 a(3) = 3 c(1) = prime(10) = 29 z 1 2 3 4 5 6 7 8 9 10 11 c(z) 29 86 43 128 64 32 16 8 4 2 1 a(10) = 11 case (2) c(1) = prime(4) = 7 z 1 2 3 4 5 6 7 ... c(z) 7 20 10 5 14 7 20 ... a(4) = 6 c(1) = prime(7) = 17 z 1 2 3 4 5 6 7 8 9 10 11 12 13 c(z) 17 50 25 74 37 110 55 164 82 41 122 61 182 z 14 15 16 17 18 19 20 ... c(z) 91 272 136 68 34 17 50 ... a(7) = 19
Links
- Freimut Marschner, Table of n, a(n) for n = 1..100000
Crossrefs
Formula
a(n) = z where {c(z+1) = c(z)/2 if c(z) mod 2 = 0, otherwise c(z+1) = 3*c(z) - 1}, z >= 1, c(1) = prime(n), n>= 1}.
Comments