cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246028 a(n) = Product_{i in row n of A245562} Fibonacci(i+1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 2, 2, 2, 4, 2, 2, 4, 6, 3, 3, 3, 6, 5, 5, 8, 13, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 2, 2, 2, 4, 2
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2014; revised Sep 05 2014

Keywords

Comments

This is the Run Length Transform of S(n) = Fibonacci(n+1).
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Crossrefs

Programs

  • Maple
    with(combinat); ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[c,op(lis)]; fi;
    od:
    a:=mul(fibonacci(i+1), i in lis);
    ans:=[op(ans),a];
    od:
    ans;
  • Mathematica
    a[n_] := Sum[Mod[Binomial[n-k, 2k] Binomial[n, k], 2], {k, 0, n}];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 28 2020, after Chai Wah Wu *)
  • PARI
    a(n)=my(s=1,k); while(n, n>>=valuation(n,2); k=valuation(n+1,2); if(k>1, s*=fibonacci(k+1)); n>>=k); s \\ Charles R Greathouse IV, Oct 21 2016
    
  • PARI
    a(n)=sum(k=0,n, !bitand(n-3*k,2*k) && !bitand(n-k,k)) \\ Charles R Greathouse IV, Oct 21 2016
    
  • Python
    def A246028(n): return sum(int(not (~(n-k) & 2*k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 27 2021

Formula

a(n) = Sum_{k=0..n} ((binomial(n-k,2k)*binomial(n,k)) mod 2). - Chai Wah Wu, Oct 19 2016