A246028 a(n) = Product_{i in row n of A245562} Fibonacci(i+1).
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 2, 2, 2, 4, 2, 2, 4, 6, 3, 3, 3, 6, 5, 5, 8, 13, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 5, 8, 2, 2, 2, 4, 2
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166 [math.CO], 2016.
- Index entries for sequences related to cellular automata
Programs
-
Maple
with(combinat); ans:=[]; for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0; for i from 1 to L1 do if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1; elif out1 = 0 and t1[i] = 1 then c:=c+1; elif out1 = 1 and t1[i] = 0 then c:=c; elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0; fi; if i = L1 and c>0 then lis:=[c,op(lis)]; fi; od: a:=mul(fibonacci(i+1), i in lis); ans:=[op(ans),a]; od: ans;
-
Mathematica
a[n_] := Sum[Mod[Binomial[n-k, 2k] Binomial[n, k], 2], {k, 0, n}]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 28 2020, after Chai Wah Wu *)
-
PARI
a(n)=my(s=1,k); while(n, n>>=valuation(n,2); k=valuation(n+1,2); if(k>1, s*=fibonacci(k+1)); n>>=k); s \\ Charles R Greathouse IV, Oct 21 2016
-
PARI
a(n)=sum(k=0,n, !bitand(n-3*k,2*k) && !bitand(n-k,k)) \\ Charles R Greathouse IV, Oct 21 2016
-
Python
def A246028(n): return sum(int(not (~(n-k) & 2*k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 27 2021
Formula
a(n) = Sum_{k=0..n} ((binomial(n-k,2k)*binomial(n,k)) mod 2). - Chai Wah Wu, Oct 19 2016
Comments