A246031 Number of ON cells in 3-D cellular automaton described in Comments, after n generations.
1, 26, 26, 124, 26, 676, 124, 1400, 26, 676, 676, 3224, 124, 3224, 1400, 10000, 26, 676, 676, 3224, 676, 17576, 3224, 36400, 124, 3224, 3224, 15376, 1400, 36400, 10000, 89504, 26, 676, 676, 3224, 676, 17576, 3224, 36400, 676, 17576, 17576, 83824, 3224, 83824, 36400, 260000, 124, 3224, 3224, 15376, 3224, 83824, 15376, 173600, 1400, 36400, 36400, 173600, 10000, 260000, 89504, 707008
Offset: 0
Keywords
Examples
The entries form blocks of sizes 1,1,2,4,8,...: 1, 26, 26, 124, 26, 676, 124, 1400, 26, 676, 676, 3224, 124, 3224, 1400, 10000, 26, 676, 676, 3224, 676, 17576, 3224, 36400, 124, 3224, 3224, 15376, 1400, 36400, 10000, 89504, 26, 676, 676, 3224, 676, 17576, 3224, 36400, 676, 17576, 17576, 83824, 3224, 83824, 36400, 260000, 124, 3224, 3224, 15376, 3224, 83824, 15376, 173600, 1400, 36400, 36400, 173600, 10000, 260000, 89504, 707008 ... From _Omar E. Pol_, Mar 19 2015: (Start) Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below: 1; .. 26; ... 26; 124; .......... 26, 676; 124; 1400; ..................... 26, 676, 676, 3224; 124, 3224; 1400; 10000; ............................................ 26, 676, 676, 3224, 676,17576,3224,36400; 124, 3224, 3224, 15376; 1400, 36400; 10000; 89504; .......................................................................................... 26, 676, 676, 3224, 676,17576,3224,36400,676,17576,17576,83824,3224,83824,36400,260000; 124, 3224, 3224, 15376, 3224, 83824, 15376, 173600; 1400, 36400, 36400, 173600; 10000, 260000; 89504; 707008; ... Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1022
- Shalosh B. Ekhad, Details about A246031 and A246032
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Index entries for sequences related to cellular automata
Programs
-
Magma
P
:= PolynomialRing(GF(2),3); f := (1+x+x^2)*(1+y+y^2)*(1+z+z^2)-x*y*z; p := 1; for i := 1 to 100 do p := p*f; print(#Terms(p)); end for; // Roman Pearce, Feb 18 2015 -
Maple
# This is a very inefficient program! f:=expand((1+x+x^2)*(1+y+y^2)*(1+z+z^2))-x*y*z; g:=n->expand(f^n) mod 2; h:=n->subs({x=1,y=1,z=1},g(n)); [seq(h(n),n=0..30)]; # Better program from Roman Pearce, Feb 18 2015: f := Expand((1+x+x^2)*(1+y+y^2)*(1+z+z^2)-x*y*z) mod 2: p := 1; for i from 1 to 100 do p := Expand(p*f) mod 2; lprint(nops(p)); end do:
-
Mathematica
f = (1 + x + x^2)*(1 + y + y^2)*(1 + z + z^2) - x*y*z; p = 1; Print[1]; Join[{1}, Table[p = Expand[p*f] // PolynomialMod[#, 2]&; Lp = Length[p]; Print[Lp]; Lp, 100]] (* Jean-François Alcover, Jan 17 2018 *)
Formula
This is the Run Length Transform of A246032 (see Comments).
Comments