cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246034 Number of odd terms in f^n, where f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1.

This page as a plain text file.
%I A246034 #29 Dec 11 2017 11:24:33
%S A246034 1,21,21,85,21,233,85,321,21,441,233,761,85,1137,321,1545,21,441,441,
%T A246034 1785,233,2925,761,3589,85,1785,1137,3977,321,4549,1545,5909,21,441,
%U A246034 441,1785,441,4893,1785,6741,233,4893,2925,9949,761,11301,3589,13181,85,1785,1785
%N A246034 Number of odd terms in f^n, where f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1.
%C A246034 This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
%H A246034 Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796 [math.CO], 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.
%H A246034 Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249 [math.CO], 2015.
%H A246034 N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a>
%H A246034 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A246034 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e A246034 Here is the neighborhood:
%e A246034 [X, X, X, X, X]
%e A246034 [X, 0, X, 0, X]
%e A246034 [X, X, X, X, X]
%e A246034 [X, 0, X, 0, X]
%e A246034 [X, X, X, X, X]
%e A246034 which contains a(1) = 21 ON cells.
%p A246034 C:=f->subs({x=1, y=1}, f);
%p A246034 # Find number of ON cells in CA for generations 0 thru M defined by rule
%p A246034 # that cell is ON iff number of ON cells in nbd at time n-1 was odd
%p A246034 # where nbd is defined by a polynomial or Laurent series f(x, y).
%p A246034 OddCA:=proc(f, M) global C; local n, a, i, f2, p;
%p A246034 f2:=simplify(expand(f)) mod 2;
%p A246034 a:=[]; p:=1;
%p A246034 for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
%p A246034 lprint([seq(a[i], i=1..nops(a))]);
%p A246034 end;
%p A246034 f:=x^4*y^4+x^4*y^3+x^3*y^4+x^4*y^2+x^2*y^4+x^4*y+x^3*y^2+x^2*y^3+x*y^4+x^4+
%p A246034    x^2*y^2+y^4+x^3+x^2*y+x*y^2+y^3+x^2+y^2+x+y+1;
%p A246034 OddCA(f, 100);
%t A246034 f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1;
%t A246034 a[0] = 1; a[n_] := Count[List @@ Expand[f^n] /. {x -> 1, y -> 1}, _?OddQ];
%t A246034 Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Dec 11 2017 *)
%Y A246034 Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246035.
%K A246034 nonn
%O A246034 0,2
%A A246034 _N. J. A. Sloane_, Aug 20 2014