A246053 The denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).
2, 2, 7, 62, 381, 365, 1414477, 573370, 118518239, 5749691557, 274638832071, 768018339627, 29741482024668555, 860983513348179, 65053034220152267, 1850237821952082716222, 16555640865486520478399, 962703047799452264039, 29167285342563717499865628061
Offset: 0
Examples
a( 0) = 2 a( 1) = 2 a( 2) = 7 a( 3) = 2 * 31 a( 4) = 3 * 127 a( 5) = 5 * 73 a( 6) = 23 * 89 * 691 a( 7) = 2 * 5 * 7 * 8191 a( 8) = 7 * 31 * 151 * 3617 a( 9) = 43867 * 131071 a(10) = 3 * 283 * 617 * 524287 a(11) = 3 * 7 * 11 * 127 * 131 * 337 * 593 a(12) = 3 * 5 * 47 * 103 * 178481 * 2294797 a(13) = 3 * 13 * 31 * 601 * 1801 * 657931
Links
- Hans Havermann, Table of n, a(n) for n = 0..200
- Hans Havermann, Factorization table of n, a(n) for n = 0..150
- Dinesh S. Thakur, A note on numerators of Bernoulli numbers, Proc. Amer. Math. Soc. 140 (2012), 3673-3676.
Programs
Formula
a(n) = A246052(n, floor(n/2)).
Comments