cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273556 Decimal expansion of Rosser's constant.

Original entry on oeis.org

8, 3, 2, 4, 2, 9, 0, 6, 5, 6, 6, 1, 9, 4, 5, 2, 7, 8, 0, 3, 0, 8, 0, 5, 9, 4, 3, 5, 3, 1, 4, 6, 5, 5, 7, 5, 0, 4, 5, 4, 4, 5, 3, 1, 8, 0, 7, 7, 4, 1, 7, 0, 5, 3, 2, 4, 0, 8, 9, 3, 9, 9, 1, 2, 9, 6, 0, 3, 4, 7, 0, 7, 1, 3, 9, 4, 8, 1, 1, 4, 2, 4, 2, 1, 9, 1, 6, 2, 7, 2, 2, 5, 0, 4, 6, 3, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, May 25 2016

Keywords

Comments

Named after the American logician and mathematician John Barkley Rosser, Sr. (1907-1989). - Amiram Eldar, Jun 20 2021

Examples

			0.832429065661945278030805943531465575045445318077417053240893991296...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

Crossrefs

Programs

  • Mathematica
    digits = 98; s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n) )*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 60}];
    RealDigits[4*C2/Exp[2*EulerGamma], 10, digits] // First
  • PARI
    4 * exp(-2*Euler) * prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 17 2021

Formula

4*C_2/exp(2*EulerGamma), where C_2 is the twin primes constant.
Equals lim_{x->inf} Product_{2 < p <= x} (1-2/p)*log(x)^2.
Showing 1-1 of 1 results.