This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246070 #17 Jan 01 2021 12:15:01 %S A246070 1,1,4,1,2,256,1,3,16,46656,1,2,50,216,16777216,1,3,36,1626,4096, %T A246070 10000000000,1,2,56,1440,83736,100000,8916100448256,1,3,16,2688,84624, %U A246070 6026120,2985984,11112006825558016,1,2,70,720,215760,7675200,571350096,105413504,18446744073709551616 %N A246070 Number A(n,k) of endofunctions f on [2n] satisfying f^k(i) = i for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A246070 Alois P. Heinz, <a href="/A246070/b246070.txt">Antidiagonals n = 0..70, flattened</a> %e A246070 Square array A(n,k) begins: %e A246070 0 : 1, 1, 1, 1, 1, 1, ... %e A246070 1 : 4, 2, 3, 2, 3, 2, ... %e A246070 2 : 256, 16, 50, 36, 56, 16, ... %e A246070 3 : 46656, 216, 1626, 1440, 2688, 720, ... %e A246070 4 : 16777216, 4096, 83736, 84624, 215760, 94816, ... %e A246070 5 : 10000000000, 100000, 6026120, 7675200, 24899120, 11218000, ... %p A246070 with(numtheory): with(combinat): M:=multinomial: %p A246070 b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]), %p A246070 proc(k, m, i, t) option remember; local d, j; d:= l[i]; %p A246070 `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!* %p A246070 (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, %p A246070 `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), %p A246070 `if`(t=0, [][], m/t)))) %p A246070 end; g(k, n-k, nops(l), 0) %p A246070 end: %p A246070 A:= (n, k)-> `if`(k=0, (2*n)^(2*n), b(2*n, n, k)): %p A246070 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A246070 multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial; %t A246070 b[n_, k0_, p_] := Module[{l, g}, l = Divisors[p]; %t A246070 g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]]; %t A246070 If[i == 1, If[m == 0, 1, n^m], Sum[M[k, Join[{k - (d - t)*j}, %t A246070 Table[d - t, {j}]]]/j!*If[j == 0, 1, (d - 1)!^j]*M[m, Join[{m - t*j}, %t A246070 Array[t&, j]]]*g[k - (d - t)*j, m - t*j, Sequence @@ %t A246070 If[d - t == 1, {i - 1, 0}, {i, t + 1}]], {j, 0, Min[k/(d - t), %t A246070 If[t == 0, {}, m/t]]}]]]; %t A246070 g[k0, n - k0, Length[l], 0]]; %t A246070 A[n_, k_] := If[k == 0, If[n == 0, 1, (2n)^(2n)], b[2*n, n, k]]; %t A246070 Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, May 27 2016, after _Alois P. Heinz_, updated Jan 01 2021 *) %Y A246070 Columns k=0-3 give: A085534, A062971, A245141, A245959. %Y A246070 Main diagonal gives A246071. %Y A246070 Cf. A246072 (the same for permutations). %K A246070 nonn,tabl %O A246070 0,3 %A A246070 _Alois P. Heinz_, Aug 12 2014