This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246073 #18 Nov 13 2020 01:23:04 %S A246073 1,1,10,108,6672,109200,45007920,983324160,665546434560, %T A246073 60174422501760,32648180513760000,4656975300322329600, %U A246073 13859947861644771532800,1193599114668580293273600,1257285172911535450293811200,766119340152013216053484800000 %N A246073 Number of permutations p on [2n] satisfying p^n(i) = i for all i in [n]. %C A246073 Conjecture: Lim inf n->infinity a(n) / (((n-1)!)^2 * 4^(n-1) / sqrt(n)) = 1.128... . - _Vaclav Kotesovec_, Aug 14 2014 %H A246073 Alois P. Heinz and Vaclav Kotesovec, <a href="/A246073/b246073.txt">Table of n, a(n) for n = 0..233</a> (first 100 terms from Alois P. Heinz) %H A246073 Vaclav Kotesovec, <a href="/A246073/a246073.jpg">Graph - asymptotic</a> %F A246073 a(n) = A246072(2n,n). %e A246073 a(2) = 10: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,3,2), (2,1,3,4), (2,1,4,3), (3,2,1,4), (3,4,1,2), (4,2,3,1), (4,3,2,1). %e A246073 a(3) = 108: (1,2,3,4,5,6), (1,2,3,4,6,5), (1,2,3,5,4,6), ... (6,4,2,3,1,5), (6,5,1,2,4,3), (6,5,2,1,3,4). %p A246073 with(numtheory): with(combinat): M:=multinomial: %p A246073 b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]), %p A246073 proc(k, m, i, t) option remember; local d, j; d:= l[i]; %p A246073 `if`(i=1, m!, add(M(k, k-(d-t)*j, (d-t)$j)/j!* %p A246073 (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, %p A246073 `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), %p A246073 `if`(t=0, [][], m/t)))) %p A246073 end; g(k, n-k, nops(l), 0) %p A246073 end: %p A246073 a:= n-> `if`(n=0, 1, b(2*n, n, n)): %p A246073 seq(a(n), n=0..20); %t A246073 multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial; %t A246073 b[n_, k_, p_] := b[n, k, p] = Module[{l, g}, l = Sort[Divisors[p]]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[{d}, d = l[[i]]; If[i == 1, m!, Sum[M[k0, Join[{k0 - (d - t) j}, Table[d - t, {j}]]]/j! (d - 1)!^j M[m, Join[{m - t j}, Table[t, {j}]]] If[d - t == 1, g[k0 - (d - t) j, m - t j, i - 1, 0], g[k0 - (d - t) j, m - t j, i, t + 1]], {j, 0, Min[k0/(d - t), If[t == 0, Infinity, m/t]]}]]]; g[k, n - k, Length[l], 0]]; %t A246073 a[n_] := If[n == 0, 1, b[2n, n, n]]; %t A246073 a /@ Range[0, 20] (* _Jean-François Alcover_, Nov 13 2020, after _Alois P. Heinz_ *) %Y A246073 Main diagonal of A246072. %K A246073 nonn %O A246073 0,3 %A A246073 _Alois P. Heinz_, Aug 12 2014