A246078 Paradigm shift sequence for (-1,4) production scheme with replacement.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 40, 44, 48, 54, 60, 66, 72, 81, 90, 99, 108, 120, 132, 144, 162, 180, 198, 216, 243, 270, 297, 324, 360, 396, 432, 486, 540, 594, 648, 729, 810, 891, 972, 1080, 1188, 1296, 1458, 1620, 1782, 1944, 2187, 2430, 2673, 2916, 3240, 3564, 3888, 4374
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,3).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8 + 10 x^9 + 11 x^10 + 9 x^11 + 7 x^12 + 5 x^13 + 4 x^14 + 3 x^15 + 2 x^16 + x^17 + x^23 + 2 x^24)/(1 - 3 x^11), {x, 0, 71}], x] (* Michael De Vlieger, Nov 18 2016 *)
-
PARI
Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +9*x^11 +7*x^12 +5*x^13 +4*x^14 +3*x^15 +2*x^16 +x^17 +x^23 +2*x^24) / (1 -3*x^11) + O(x^100)) \\ Colin Barker, Nov 18 2016
Formula
a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 3*a(n-11) for all n >= 26.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +9*x^11 +7*x^12 +5*x^13 +4*x^14 +3*x^15 +2*x^16 +x^17 +x^23 +2*x^24) / (1 -3*x^11). - Colin Barker, Nov 18 2016
Comments