A246079 Paradigm shift sequence for (-1,5) production scheme with replacement.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 66, 72, 78, 84, 90, 99, 108, 117, 126, 135, 144, 156, 168, 180, 198, 216, 234, 252, 270, 297, 324, 351, 378, 405, 432, 468, 504, 540, 594, 648, 702, 756, 810, 891, 972, 1053, 1134, 1215, 1296, 1404
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,3).
Crossrefs
Programs
-
Mathematica
Join[Range[18], LinearRecurrence[PadLeft[{3}, 14], {20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 52, 56}, 55]] (* Jean-François Alcover, Sep 25 2017 *)
-
PARI
Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +12*x^14 +10*x^15 +8*x^16 +6*x^17 +5*x^18 +4*x^19 +3*x^20 +2*x^21 +x^22 +x^30 +2*x^31) / (1 -3*x^14) + O(x^100)) \\ Colin Barker, Nov 18 2016
Formula
a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 3*a(n-14) for all n >= 33.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +12*x^14 +10*x^15 +8*x^16 +6*x^17 +5*x^18 +4*x^19 +3*x^20 +2*x^21 +x^22 +x^30 +2*x^31) / (1 -3*x^14). - Colin Barker, Nov 18 2016
Comments