A246088 Paradigm shift sequence for (2,2) production scheme with replacement.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 54, 63, 72, 84, 96, 112, 128, 144, 162, 189, 216, 252, 288, 336, 384, 448, 512, 576, 648, 756, 864, 1008, 1152, 1344, 1536, 1792, 2048, 2304, 2592, 3024, 3456, 4032, 4608, 5376, 6144, 7168, 8192, 9216, 10368, 12096, 13824, 16128, 18432, 21504, 24576, 28672, 32768, 36864, 41472
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,4).
Crossrefs
Programs
-
PARI
Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +7*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^20 +6*x^21 +3*x^22 +2*x^29 +9*x^30) / ((1 -2*x^5) * (1 +2*x^5)) + O(x^100)) \\ Colin Barker, Nov 19 2016
Formula
a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 4*a(n-10) for all n >= 32.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +7*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^20 +6*x^21 +3*x^22 +2*x^29 +9*x^30) / ((1 -2*x^5) * (1 +2*x^5)). - Colin Barker, Nov 19 2016
Comments