A246104 Least m > 0 for which (s(m), ..., s(n+m-1)) = (s(0), ..., s(n)), the first n+1 terms of the infinite Fibonacci word A003849.
2, 3, 5, 5, 8, 8, 8, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89
Offset: 0
Examples
In A003849, the initial segment (s(0), ..., s(6)) = (0,1,0,0,1,0,1) first repeats at (s(8), ..., s(14)), so that a(6) = 8.
Links
- Ivan Neretin, Table of n, a(n) for n = 0..10944
Programs
-
Maple
seq(combinat:-fibonacci(n)$combinat:-fibonacci(n-2),n=2..12); # Robert Israel, Oct 01 2017
-
Mathematica
s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; q = -1 + Flatten[Table[Select[n + Range[2, 1600], b[#, n + # - 1] == b[1, n] &, 1], {n, 1, 120}]] Flatten@Table[ConstantArray[Fibonacci[n + 1], Fibonacci[n - 1]], {n, 10}] (* Ivan Neretin, Sep 30 2017 *)
Formula
Concatenation of F(n - 2) copies of F(n), for n >= 1, where F = A000045 (Fibonacci numbers).
Comments