cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246104 Least m > 0 for which (s(m), ..., s(n+m-1)) = (s(0), ..., s(n)), the first n+1 terms of the infinite Fibonacci word A003849.

Original entry on oeis.org

2, 3, 5, 5, 8, 8, 8, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89
Offset: 0

Views

Author

Clark Kimberling, Aug 14 2014

Keywords

Comments

If n is a term of A001911, then a(n) = n+2, otherwise a(n) > n+2. - Ivan Neretin, Sep 30 2017

Examples

			In A003849, the initial segment (s(0), ..., s(6)) = (0,1,0,0,1,0,1) first repeats at (s(8), ..., s(14)), so that a(6) = 8.
		

Crossrefs

Programs

  • Maple
    seq(combinat:-fibonacci(n)$combinat:-fibonacci(n-2),n=2..12); # Robert Israel, Oct 01 2017
  • Mathematica
    s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; q = -1 + Flatten[Table[Select[n + Range[2, 1600], b[#, n + # - 1] == b[1, n] &, 1], {n, 1, 120}]]
    Flatten@Table[ConstantArray[Fibonacci[n + 1], Fibonacci[n - 1]], {n, 10}] (* Ivan Neretin, Sep 30 2017 *)

Formula

Concatenation of F(n - 2) copies of F(n), for n >= 1, where F = A000045 (Fibonacci numbers).

A280514 Index sequence of the reverse block-fractal sequence A003849.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14
Offset: 1

Views

Author

Clark Kimberling, Jan 06 2017

Keywords

Comments

The sequence is the concatenation of blocks, the n-th of which, for n >=0, consists of the integers from F(n+1) down to F(2) = 1, where F = A000045, the Fibonacci numbers. See A280511 for the definition of reverse block-fractal sequence. The index sequence (a(n)) of a reverse block-fractal sequence (s(n)) is defined (at A280513) by a(n) = least k > 0 such that (s(k), s(k+1), ..., s(k+n)) = (s(n), s(n-1), ..., s(0)).
Apparently (up to offset) a duplicate of A246105. - R. J. Mathar, Jan 10 2017
Let W be the Fibonacci word A003849. Then a(n) is the least k such that the reversal of the first n-block in W occurs in W beginning at the k-th term. Since (a(n)) is unbounded, the reversal of every block in W occurs infinitely many times in W. - Clark Kimberling, Dec 19 2020

Examples

			A003849 = (0,1,0,0,1,0,1,0,0,1,0,0,1,...) = (s(1), s(2), ... ).
(init. block #1) = (1); reversal (0) first occurs at s(1), so a(1) = 1;
(init. block #2) = (0,1); rev. (1,0) first occurs at s(2), so a(2) = 2;
(init. block #3) = (0,1,0); rev. (0,1,0) first occurs at s(1), so a(3) = 1;
(init. block #4) = (0,1,0,0); rev. (0,0,1,0) first occurs at s(3), so a(4) = 3.
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; t = Table[Floor[(n + 2) #] - Floor[(n + 1) #], {n, 0, 220}] &[
    2 - GoldenRatio]  (* A003849 *)
    u = StringJoin[Map[ToString, t]]
    breverse[seq_] := Flatten[Last[Reap[NestWhile[# + 1 &, 1, (StringLength[
    str = StringTake[seq, Min[StringLength[seq], #]]] == # && ! (Sow[StringPosition[seq, StringReverse[str], 1][[1]][[1]]]) === {}) &]]]];
    breverse[u]  (* Peter J. C. Moses, Jan 02 2017 *)
Showing 1-2 of 2 results.