This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246107 #13 May 02 2022 10:24:02 %S A246107 1,1,7,738,7880456,20834113243925,19909522361922032493690, %T A246107 10114980502439545115146468340980932, %U A246107 3861175753082201291221743022346066208381644388448,1493197587365241166689220567691206411606485768307602552950789523519 %N A246107 Number of inequivalent n X n matrices with entries from [n], where equivalence means permutations of rows or columns. %H A246107 Alois P. Heinz, <a href="/A246107/b246107.txt">Table of n, a(n) for n = 0..26</a> %H A246107 <a href="/index/Mat#inequiv">Index to number of inequivalent matrices modulo permutation of rows and columns</a> %F A246107 a(n) = A246106(2n,n). %p A246107 b:= proc(n, i) option remember; `if`(n=0, [[]], %p A246107 `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]], %p A246107 b(n-i*j, i-1))[], j=1..n/i)])) %p A246107 end: %p A246107 A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]* %p A246107 igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s) %p A246107 /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)) %p A246107 end: %p A246107 a:= n-> A(n$2): %p A246107 seq(a(n), n=0..12); %Y A246107 Main diagonal of A246106. %K A246107 nonn %O A246107 0,3 %A A246107 _Alois P. Heinz_, Aug 13 2014