This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246117 #41 May 12 2025 10:00:25 %S A246117 1,0,1,0,1,1,0,1,2,1,0,2,5,4,1,0,4,12,13,6,1,0,12,40,51,31,9,1,0,36, %T A246117 132,193,144,58,12,1,0,144,564,904,769,376,106,16,1,0,576,2400,4180, %U A246117 3980,2273,800,170,20,1,0,2880,12576,23300,24080,15345,6273,1650,270,25,1 %N A246117 Number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles. %C A246117 An analog of the Stirling numbers of the first kind, A008275. %C A246117 A permutation p of the set {1,2,...,n} is called a parity-preserving permutation if p(i) = i (mod 2) for i = 1,2,...,n. The set of all such permutations forms a subgroup of order A010551 of the symmetric group on n letters. This triangle gives the number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles. An example is given below. %C A246117 If we write a parity-preserving permutation p in one line notation as ( p(1) p(2) p(3)... p(n) ) then the first entry p(1) is odd and thereafter the entries alternate in parity. Thus the permutation p belongs to the set of parity-alternate permutations studied by Tanimoto. %C A246117 The row generating polynomials form the polynomial sequence x, x^2, x^2*(x + 1), x^2*(x + 1)^2, x^2*(x + 1)^2*(x + 2), x^2*(x + 1)^2*(x + 2)^2, .... Except for differences in offset, this triangle is the Galton array G(floor(n/2),1) in the notation of Neuwirth with inverse array G(-floor(k/2),1). See A246118 for the unsigned version of the inverse array. %C A246117 From _Peter Bala_, Apr 12 2018: (Start) %C A246117 In the cycle decomposition of a parity preserving permutation, the entries in a given cycle are either all even or all odd. Define T(n,k,i), 1 <= i <= k-1, (a refinement of the table number T(n,k)) to be the number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles and with i of the cycles having all even entries. Clearly, T(n,k) = Sum_{i = 1..k-1} T(n,k,i). %C A246117 A simple combinatorial argument (cf. Dzhumadil'daev and Yeliussizov, Proposition 5.3) gives the recurrences %C A246117 T(2*n,k,i) = T(2n-1,k-1,i-1) + (n-1)*T(2*n-1,k,i) and %C A246117 T(2*n+1,k,i) = T(2*n,k-1,i) + n*T(2*n,k,i). %C A246117 The solution to these recurrences for n >= 1 is T(2*n,k,i) = S1(n,i)*S1(n,k-i) and T(2*n+1,k,i) = S1(n,i)*S1(n+1,k-i), where S1(n,k) = |A008275(n,k)| denotes the (unsigned) Stirling cycle numbers of the first kind. Kotesovec's formula for T(n,k) below follows immediately from this. Cf. A274310. (End) %C A246117 Triangle of allowable Stirling numbers of the first kind (with a different offset). See Cai and Readdy, Table 4. - _Peter Bala_, Apr 14 2018 %H A246117 Y. Cai and M. Readdy, <a href="http://arxiv.org/abs/1506.03249">Negative q-Stirling numbers</a>, arXiv:1506.03249 [math.CO], 2015. %H A246117 A. Dzhumadil'daev and D. Yeliussizov, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p10">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10. %H A246117 E. Neuwirth, <a href="https://doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial functions: Extending Galton's board</a>, Discrete Math. 239 (2001) 33-51. %H A246117 Shinji Tanimoto, <a href="https://arxiv.org/abs/math/0612135">Alternate Permutations and Signed Eulerian Numbers</a>, arXiv:math/0612135 [math.CO], 2006; Ann. Comb. 14 (2010), 355. %F A246117 Recurrence equations: T(1,1) = 1, T(n,1) = 0 for n >= 2; T(n,k) = 0 for k > n; otherwise T(n+1,k) = floor(n/2)*T(n,k) + T(n,k-1). %F A246117 Row generating polynomials R(n,x): R(2*n,x) = ( x*(x + 1)*...*(x + n - 1) )^2; R(2*n + 1,x) = R(2*n,x)*(x + n) with the convention R(0,x) = 1. %F A246117 Row sums: A010551; Column 3: A203151; %F A246117 First subdiagonal: A002620; 2nd subdiagonal: A203246. %F A246117 T(n,k) = (-1)^(n-k) * Sum_{j=1..k-1} Stirling1(floor((n+1)/2),j) * Stirling1(floor(n/2),k-j), for k>1. - _Vaclav Kotesovec_, Feb 09 2015 %e A246117 Triangle begins %e A246117 n\k| 1 2 3 4 5 6 7 8 %e A246117 = = = = = = = = = = = = = = = = = = = %e A246117 1 | 1 %e A246117 2 | 0 1 %e A246117 3 | 0 1 1 %e A246117 4 | 0 1 2 1 %e A246117 5 | 0 2 5 4 1 %e A246117 6 | 0 4 12 13 6 1 %e A246117 7 | 0 12 40 51 31 9 1 %e A246117 8 | 0 36 132 193 144 58 12 1 %e A246117 ... %e A246117 n = 5: The 12 parity-preserving permutations of S_5 and their cycle structure are shown in the table below. %e A246117 = = = = = = = = = = = = = = = = = = = = = = = = = = %e A246117 Parity-preserving Cycle structure # cycles %e A246117 permutation %e A246117 = = = = = = = = = = = = = = = = = = = = = = = = = = %e A246117 54123 (153)(24) 2 %e A246117 34521 (135)(24) 2 %e A246117 34125 (13)(24)(5) 3 %e A246117 14523 (1)(24)(35) 3 %e A246117 32541 (135)(2)(4) 3 %e A246117 52143 (153)(2)(4) 3 %e A246117 54321 (15)(24)(3) 3 %e A246117 32145 (13)(2)(4)(5) 4 %e A246117 14325 (1)(24)(3)(5) 4 %e A246117 12543 (1)(2)(35)(4) 4 %e A246117 52341 (15)(2)(3)(4) 4 %e A246117 12345 (1)(2)(3)(4)(5) 5 %e A246117 = = = = = = = = = = = = = = = = = = = = = = = = = = %e A246117 This gives row 5 as [2, 5, 4, 1] with generating function 2*x^2 + 5*x^3 + 4*x^4 + x^5 = ( x*(x + 1) )^2 * (x + 2). %p A246117 A246117 := proc(n,k) %p A246117 if n = k then %p A246117 1; %p A246117 elif k <= 1 or k > n then %p A246117 0; %p A246117 else %p A246117 floor((n-1)/2)*procname(n-1,k)+procname(n-1,k-1) ; %p A246117 end if; %p A246117 end proc: %p A246117 seq(seq(A246117(n,k),k=1..n),n=1..8) ; # _R. J. Mathar_, Oct 01 2016 %t A246117 Flatten[{1,Rest[Table[Table[(-1)^(n-k) * Sum[StirlingS1[Floor[(n+1)/2],j] * StirlingS1[Floor[n/2],k-j],{j,1,k-1}],{k,1,n}],{n,1,12}]]}] (* _Vaclav Kotesovec_, Feb 09 2015 *) %Y A246117 A002620 (1st subdiagonal), A008275, A010551 (row sums and column k = 2), A125300, A203151 (column k = 3), A203246 (2nd subdiagonal), A246118 (unsigned matrix inverse). %Y A246117 Cf. A129256, A187235, A274310. %K A246117 nonn,easy,tabl %O A246117 1,9 %A A246117 _Peter Bala_, Aug 14 2014