cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246129 Decimal expansion of the number whose continued fraction is given by A246127 (limiting block extension of an infinite Fibonacci word).

This page as a plain text file.
%I A246129 #11 Aug 23 2014 00:04:46
%S A246129 2,3,6,6,3,0,4,6,9,4,6,5,3,2,7,2,6,5,6,6,8,2,4,9,7,2,0,5,8,6,1,4,5,6,
%T A246129 9,1,0,0,8,1,9,9,4,8,1,0,4,0,9,5,8,9,1,0,9,3,0,5,4,1,0,2,7,1,3,8,5,3,
%U A246129 7,7,9,1,0,1,9,1,3,5,3,1,1,3,4,6,2,6
%N A246129 Decimal expansion of the number whose continued fraction is given by A246127 (limiting block extension of an infinite Fibonacci word).
%C A246129 The (2,1)-version of the infinite Fibonacci word, A014675, as a sequence, is (2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,...).  Its limiting block extension, A246128, is the sequence (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,...), which is the continued fraction for 2.366304...
%e A246129 [2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1,...] =  2.3663046946532726566824972058...
%t A246129 seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[      Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
%t A246129 q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
%t A246129 u = N[FromContinuedFraction[t1], 100]
%t A246129 r = RealDigits[u][[1]] (* A246129 *)
%Y A246129 Cf. A246127, A246128, A014675, A245975.
%K A246129 nonn,cons
%O A246129 1,1
%A A246129 _Clark Kimberling_ and _Peter J. C. Moses_, Aug 15 2014