This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246129 #11 Aug 23 2014 00:04:46 %S A246129 2,3,6,6,3,0,4,6,9,4,6,5,3,2,7,2,6,5,6,6,8,2,4,9,7,2,0,5,8,6,1,4,5,6, %T A246129 9,1,0,0,8,1,9,9,4,8,1,0,4,0,9,5,8,9,1,0,9,3,0,5,4,1,0,2,7,1,3,8,5,3, %U A246129 7,7,9,1,0,1,9,1,3,5,3,1,1,3,4,6,2,6 %N A246129 Decimal expansion of the number whose continued fraction is given by A246127 (limiting block extension of an infinite Fibonacci word). %C A246129 The (2,1)-version of the infinite Fibonacci word, A014675, as a sequence, is (2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,...). Its limiting block extension, A246128, is the sequence (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,...), which is the continued fraction for 2.366304... %e A246129 [2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1,...] = 2.3663046946532726566824972058... %t A246129 seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*) %t A246129 q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*) %t A246129 u = N[FromContinuedFraction[t1], 100] %t A246129 r = RealDigits[u][[1]] (* A246129 *) %Y A246129 Cf. A246127, A246128, A014675, A245975. %K A246129 nonn,cons %O A246129 1,1 %A A246129 _Clark Kimberling_ and _Peter J. C. Moses_, Aug 15 2014