A246130 Binomial(2n,n)-2 mod n.
0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 13, 4, 0, 4, 0, 18, 4, 4, 0, 10, 0, 4, 18, 26, 0, 2, 0, 4, 7, 4, 5, 14, 0, 4, 18, 18, 0, 40, 0, 2, 43, 4, 0, 10, 0, 4, 1, 42, 0, 4, 30, 30, 37, 4, 0, 34, 0, 4, 10, 4, 3, 64, 0, 34, 64, 38, 0, 34, 0, 4, 43, 30, 75, 64, 0, 18, 18, 4, 0, 26, 63, 4, 76, 86, 0, 38, 89, 22, 18, 4, 3, 58, 0
Offset: 1
Keywords
Examples
a(7)=0 because cb(7)-2 = binomial(14,7) -2 = 3432-2 = 490*7. Check also that cn(7) = 3432/8 = 429 and 429-2 = 61*7 so that (cn(7)-2) mod 7 = 0.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient
- Wikipedia, Wolstenholme's theorem
Crossrefs
Programs
-
PARI
a(n) = (binomial(2*n,n)-2)%n
Formula
For any prime p, a(p)=0.
Comments