A246134 Binomial(2n, n) - 2 mod n^4.
0, 4, 18, 68, 250, 922, 1029, 580, 2691, 4754, 2662, 8474, 4394, 10294, 2518, 49732, 29478, 65074, 123462, 128818, 6535, 93174, 36501, 12058, 187750, 162582, 297936, 273782, 536558, 741422, 59582, 16964, 118477, 540434, 132305, 136130, 1114366, 1138598, 2214594, 2381618, 1860867, 2795686, 1828661, 1775622, 2683618, 1435710, 1557345, 3882778
Offset: 1
Keywords
Examples
a(7) = (binomial(14,7)-2) mod 7^4 = (3432-2) mod 2401 = 1029.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica 71 (4): 381-389, (1995)
- Wikipedia, Wolstenholme's theorem
Programs
-
PARI
a(n) = (binomial(2*n,n)-2)%n^4
Comments