cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246134 Binomial(2n, n) - 2 mod n^4.

Original entry on oeis.org

0, 4, 18, 68, 250, 922, 1029, 580, 2691, 4754, 2662, 8474, 4394, 10294, 2518, 49732, 29478, 65074, 123462, 128818, 6535, 93174, 36501, 12058, 187750, 162582, 297936, 273782, 536558, 741422, 59582, 16964, 118477, 540434, 132305, 136130, 1114366, 1138598, 2214594, 2381618, 1860867, 2795686, 1828661, 1775622, 2683618, 1435710, 1557345, 3882778
Offset: 1

Views

Author

Stanislav Sykora, Aug 16 2014

Keywords

Comments

For e > 3, unlike the cases e=1,2,3, the numbers binomial(2n, n) - 2 mod n^e are not necessarily 0 for any n>1, be it prime or composite (see A246130 for introductory comments). Testing up to n=278000, the only number n>1 for which a(n)=0 is the first Wolstenholme prime 16843 (A088164), but no composite.

Examples

			a(7) = (binomial(14,7)-2) mod 7^4 = (3432-2) mod 2401 = 1029.
		

Crossrefs

Cf. A000984, A088164, A246130 (e=1), A246132 (e=2), A246133 (e=3).

Programs

  • PARI
    a(n) = (binomial(2*n,n)-2)%n^4