A246138 a(n) = (Sum_{k=0..n-1} A246065(k)) / n^2.
-1, 0, 1, 3, 9, 32, 135, 648, 3409, 19176, 113535, 700125, 4463415, 29256120, 196334697, 1344542787, 9371335905, 66335058128, 476022873279, 3457886816997, 25394948961831, 188353304179920, 1409578821465129, 10635308054118792, 80845157085234975
Offset: 1
Keywords
Examples
a(5) = 9 since sum_{k=0}^{5-1}A246065(k) = -1 + 1 + 9 + 39 + 177 = 225 = 5^2*9.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..170
Programs
-
Maple
ogf := (1-((9*x-1)/(x-1))^(3/4)*hypergeom([-1/4, 3/4],[1],-64*x/(9*x-1)^3/(x-1)))/6; series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
Mathematica
s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}] a[n_]:=Sum[s[k],{k,0,n-1}]/n^2 Table[a[n],{n,1,25}]
Formula
Recurrence: n^2*a(n) = 2*(n-2)*(5*n-8)*a(n-1) - 9*(n-2)^2*a(n-2). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ 3^(2*n+5/2) / (128*Pi*n^4). - Vaclav Kotesovec, Aug 27 2014
Comments