A246144
Limiting block extension of A000002 (Kolakoski sequence) with first term as initial block.
Original entry on oeis.org
1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1
S = A000002, with B = (s(1)); that is, (m,k) = (1,0)
S = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,...)
B'(0) = (1)
B'(1) = (1,1)
B'(2) = (1,1,2)
B'(3) = (1,1,2,2)
B'(4) = (1,1,2,2,1)
B'(5) = (1,1,2,2,1,2)
S^ = (1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,...),
with index sequence (1,4,13,16,51,78,97,124,178,247,322,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; n = 30; s = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1]; (* A246144 *)
Take[s, 30]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246144*)
Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246145*)
A246145
Index sequence for limit-block extending A000002 (Kolakoski sequence) with first term as initial block.
Original entry on oeis.org
1, 4, 13, 16, 51, 78, 97, 124, 178, 247, 322, 402, 475, 578, 623, 746, 842, 1030, 1111, 1173, 1454, 1481, 2071, 2385, 2686, 4395, 5402, 5587, 5932, 6150, 6622, 6767, 7038, 7311, 7461, 10404, 10674, 12797, 18358, 20169, 20575, 21667, 23244, 25101, 26224
Offset: 1
S = A000002, with B = (s(1)); that is, (m,k) = (1,0)
S = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,...)
B'(0) = (1)
B'(1) = (1,1)
B'(2) = (1,1,2)
B'(3) = (1,1,2,2)
B'(4) = (1,1,2,2,1)
B'(5) = (1,1,2,2,1,2)
S^ = (1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,...),
with index sequence (1,4,13,16,51,78,97,124,178,247,322,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; n = 30; s = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1]; (* A246144 *)
Take[s, 30]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246144*)
Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246145*)
A246147
Index sequence for limit-block extending A010060 (Thue-Morse sequence) with first term as initial block.
Original entry on oeis.org
0, 3, 6, 12, 20, 30, 36, 68, 92, 116, 132, 156, 180, 228, 260, 308, 356, 420, 452, 516, 564, 612, 676, 708, 756, 804, 836, 900, 948, 996, 1076, 1188, 1268, 1316, 1460, 1572, 1716, 1764, 1844, 1956, 2100, 2212, 2292, 2340, 2484, 2740, 2868, 3060, 3252, 3380
Offset: 0
S = A010060, with B = (s(0)); that is, (m,k) = (0,0)
S = (0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,...)
B'(0) = (0)
B'(1) = (0,1)
B'(2) = (0,1,1)
B'(3) = (0,1,1,0)
B'(4) = (0,1,1,0,0)
B'(5) = (0,1,1,0,0,1)
S^ = (0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,...),
with index sequence (0,3,6,12,20,30,36,68,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 14]; (* A010060 *)
Take[s, 60]
t = {{0}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246146 *)
-1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (* A246147 *)
A246141
Index sequence for limit-block extending A006337 (difference sequence of the Beatty sequence for sqrt(2)) with first term as initial block.
Original entry on oeis.org
1, 3, 6, 8, 15, 20, 27, 32, 37, 49, 66, 78, 90, 107, 119, 136, 148, 160, 177, 189, 206, 235, 247, 276, 305, 317, 346, 375, 404, 416, 445, 474, 486, 515, 556, 585, 614, 655, 684, 725, 754, 783, 824, 853, 894, 923, 964, 993, 1022, 1063, 1092, 1133, 1162, 1191
Offset: 1
S = A006337, with B = (s(1)); that is, (m,k) = (1,0)
S = (1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2,...)
B'(0) = (1)
B'(1) = (1,2)
B'(2) = (1,2,1)
B'(3) = (1,2,1,1)
B'(4) = (1,2,1,1,2)
B'(5) = (1,2,1,1,2,1)
S^ = (1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1,...),
with index sequence (1,3,6,8,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*Sqrt[2]], {n, 10000}]]; Take[s, 60]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # +Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246140 *)
Accumulate[Table[p[k], {k, 0, n - 1}]] (* A246141 *)
Showing 1-4 of 4 results.
Comments