A246199 Odd half-Zumkeller numbers.
225, 441, 1225, 2025, 3969, 5625, 11025, 18225, 21609, 27225, 35721, 38025, 50625, 53361, 65025, 74529, 81225, 99225, 119025, 127449, 140625, 148225, 159201, 164025, 184041, 189225, 194481, 207025, 216225, 233289, 245025, 275625, 308025, 314721, 321489
Offset: 1
Keywords
References
- S. Clark et al., Zumkeller numbers, Mathematical Abundance Conference, April 2008.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..503 from Chai Wah Wu)
- K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155.
Programs
-
Python
from sympy import divisors import numpy as np A246199 = [] for n in range(3, 10**5, 2): d = divisors(n) d.remove(n) s, dmax = sum(d), max(d) if not s % 2 and 2*dmax <= s: d.remove(dmax) s2, ld = int(s/2-dmax), len(d) z = np.zeros((ld+1, s2+1), dtype=int) for i in range(1, ld+1): y = min(d[i-1], s2+1) z[i, range(y)] = z[i-1, range(y)] z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y) if z[i, s2] == s2: A246199.append(n) break
Comments