This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246213 #9 Dec 28 2020 09:53:04 %S A246213 2,32,500,8600,165690,3568768,85372280,2251589600,65007768650, %T A246213 2041482333440,69330316507452,2533173484572640,99124829660524850, %U A246213 4137148176815360000,183498069976613613680,8620747043700633797888,427712115490907106172050,22350263436559575406220800 %N A246213 Number of endofunctions on [n] where the largest cycle length equals 3. %H A246213 Alois P. Heinz, <a href="/A246213/b246213.txt">Table of n, a(n) for n = 3..200</a> %F A246213 a(n) ~ (3*exp(11/6)-2*exp(3/2)) * n^(n-1). - _Vaclav Kotesovec_, Aug 21 2014 %p A246213 with(combinat): %p A246213 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A246213 add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* %p A246213 b(n-i*j, i-1), j=0..n/i))) %p A246213 end: %p A246213 A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n): %p A246213 a:= n-> A(n, 3) -A(n, 2): %p A246213 seq(a(n), n=3..25); %t A246213 multinomial[n_, k_List] := n!/Times @@ (k!); %t A246213 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]]; %t A246213 A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}]; %t A246213 a[n_] := A[n, 3] - A[n, 2]; %t A246213 a /@ Range[3, 25] (* _Jean-François Alcover_, Dec 28 2020, after _Alois P. Heinz_ *) %Y A246213 Column k=3 of A241981. %K A246213 nonn %O A246213 3,1 %A A246213 _Alois P. Heinz_, Aug 19 2014