This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246214 #9 Dec 28 2020 09:53:11 %S A246214 6,150,3240,72030,1719060,44520840,1252364400,38167414560, %T A246214 1255558958280,44404434904830,1681726757430720,67953913291104750, %U A246214 2919509551303952880,132943540577100047760,6397727538671302783680,324511272091351156939200,17306903935107005765263200 %N A246214 Number of endofunctions on [n] where the largest cycle length equals 4. %H A246214 Alois P. Heinz, <a href="/A246214/b246214.txt">Table of n, a(n) for n = 4..200</a> %F A246214 a(n) ~ (4*exp(25/12) - 3*exp(11/6)) * n^(n-1). - _Vaclav Kotesovec_, Aug 21 2014 %p A246214 with(combinat): %p A246214 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A246214 add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* %p A246214 b(n-i*j, i-1), j=0..n/i))) %p A246214 end: %p A246214 A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n): %p A246214 a:= n-> A(n, 4) -A(n, 3): %p A246214 seq(a(n), n=4..25); %t A246214 multinomial[n_, k_List] := n!/Times @@ (k!); %t A246214 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]]; %t A246214 A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}]; %t A246214 a[n_] := A[n, 4] - A[n, 3]; %t A246214 a /@ Range[4, 25] (* _Jean-François Alcover_, Dec 28 2020, after _Alois P. Heinz_ *) %Y A246214 Column k=4 of A241981. %K A246214 nonn %O A246214 4,1 %A A246214 _Alois P. Heinz_, Aug 19 2014