This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246220 #9 Aug 21 2014 05:48:05 %S A246220 362880,43908480,3448811520,228012744960,13954338478080, %T A246220 827512686000000,48753634065776640,2895879112057451520, %U A246220 174984885490926551040,10817178515493080290560,686533182382689959116800,44833266187415969387604480,3016487768851293040555130880 %N A246220 Number of endofunctions on [n] where the largest cycle length equals 10. %C A246220 In general, number of endofunctions on [n] where the largest cycle length equals k is asymptotic to (k*exp(H(k)) - (k-1)*exp(H(k-1))) * n^(n-1), where H(k) is the harmonic number A001008/A002805, k>=1. - _Vaclav Kotesovec_, Aug 21 2014 %H A246220 Alois P. Heinz, <a href="/A246220/b246220.txt">Table of n, a(n) for n = 10..200</a> %F A246220 a(n) ~ (10*exp(7381/2520) - 9*exp(7129/2520)) * n^(n-1). - _Vaclav Kotesovec_, Aug 21 2014 %p A246220 with(combinat): %p A246220 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A246220 add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* %p A246220 b(n-i*j, i-1), j=0..n/i))) %p A246220 end: %p A246220 A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n): %p A246220 a:= n-> A(n, 10) -A(n, 9): %p A246220 seq(a(n), n=10..25); %Y A246220 Column k=10 of A241981. %K A246220 nonn %O A246220 10,1 %A A246220 _Alois P. Heinz_, Aug 19 2014