This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246261 #18 Mar 12 2021 15:56:46 %S A246261 1,3,4,9,10,11,12,13,14,16,23,25,27,30,31,33,34,35,36,37,38,39,40,42, %T A246261 44,47,48,49,52,56,58,59,64,69,71,75,81,82,83,85,86,89,90,92,93,95,97, %U A246261 99,100,102,105,106,107,108,109,110,111,114,117,119,120,121,122,124,126,130,131,132,133,134,136,139,140,141,143,144 %N A246261 Numbers n such that A003961(n) is of the form 4k+1. %C A246261 Equally: numbers n for which A048673(n) is odd. %C A246261 Also, after 1, numbers n for which A243062(n) is even. %H A246261 Antti Karttunen, <a href="/A246261/b246261.txt">Table of n, a(n) for n = 1..10001</a> %F A246261 For all n >= 1, A246262(a(n)) = n. %t A246261 {1}~Join~Select[Range[144], Mod[Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]], 4] == 1 &] (* _Michael De Vlieger_, Mar 12 2021 *) %o A246261 (Scheme, with _Antti Karttunen_'s IntSeq-library) %o A246261 (define A246261 (MATCHING-POS 1 1 (lambda (n) (= 1 (modulo (A003961 n) 4))))) %o A246261 (Python) %o A246261 from sympy import factorint, prime, primepi %o A246261 from operator import mul %o A246261 def a003961(n): %o A246261 f=factorint(n) %o A246261 return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f]) %o A246261 print([n for n in range(1, 201) if a003961(n)%4==1]) # _Indranil Ghosh_, Jun 12 2017 %Y A246261 Complement: A246263. %Y A246261 Positions of zeros in A246271. %Y A246261 Inverse function: A246262. %Y A246261 The first row of array A246259. %Y A246261 Cf. A003961, A048673, A243062, A246265. %K A246261 nonn %O A246261 1,2 %A A246261 _Antti Karttunen_, Aug 21 2014