cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246307 Numerator of Z^(2)(n), where Z^(2)(n) = n for n=0,1; thereafter Z^(2)(n) = (1/3)*Sum_{k=1..n-1} Stirling_2(n,k)*Z^(2)(k).

Original entry on oeis.org

0, 1, 1, 5, 6, 399, 10137, 364737, 2206077, 276269667, 21732613641, 2097942773859, 60958311638283, 16792338947372883, 2704712327221326273, 503673752669173980741, 6711263837756846638875, 3248087145389524173611367, 885435154962504420364992693, 270090359296255369532260168299
Offset: 0

Views

Author

N. J. A. Sloane, Aug 22 2014

Keywords

Comments

The denominators are various powers of 2.

Examples

			The sequence Z^(2)(n) begins 0, 1, 1/2, 5/4, 6, 399/8, 10137/16, 364737/32, 2206077/8, 276269667/32,  21732613641/64, 2097942773859/128, 60958311638283/64, 16792338947372883/256,  2704712327221326273/512,...
		

Crossrefs

Cf. A005121.

Programs

  • Maple
    Z:=proc(n,p) option remember; local k; if n <= 1 then n else add(stirling2(n,k)*Z(k,p)/(p-1),k=1..n-1); fi; end;
    t1:=[seq(Z(n,2),n=0..35)];