cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246314 Number of odd terms in f^n, where f = 1/x^2+1/x+1+x+x^2+1/y^2+1/y+y+y^2.

Original entry on oeis.org

1, 9, 9, 37, 9, 65, 37, 157, 9, 81, 65, 237, 37, 293, 157, 713, 9, 81, 81, 333, 65, 473, 237, 1077, 37, 333, 293, 1129, 157, 1285, 713, 2737, 9, 81, 81, 333, 81, 585, 333, 1413, 65, 585, 473, 1733, 237, 1933, 1077, 4337, 37, 333, 333, 1369, 293, 2125, 1129, 4969, 157, 1413, 1285, 5041, 713, 5561, 2737, 11421, 9, 81
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2014

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f (a cross containing 9 cells), and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.

Examples

			Here is the neighborhood:
[0, 0, X, 0, 0]
[0, 0, X, 0, 0]
[X, X, X, X, X]
[0, 0, X, 0, 0]
[0, 0, X, 0, 0]
which contains a(1) = 9 ON cells.
The second and third generations are:
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[X, 0, X, 0, X, 0, X, 0, X]  (again with 9 ON cells)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, X, 0, X, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, X, 0, 0, X, X, X, 0, 0, X, 0, 0]
[0, 0, X, 0, X, 0, 0, 0, X, 0, X, 0, 0]
[X, X, 0, 0, X, 0, X, 0, X, 0, 0, X, X] (with 37 ON cells)
[0, 0, X, 0, X, 0, 0, 0, X, 0, X, 0, 0]
[0, 0, X, 0, 0, X, X, X, 0, 0, X, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, X, 0, X, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
The terms can be arranged into blocks of sizes 1,1,2,4,8,16,32,...:
1,
9,
9, 37,
9, 65, 37, 157,
9, 81, 65, 237, 37, 293, 157, 713,
9, 81, 81, 333, 65, 473, 237, 1077, 37, 333, 293, 1129, 157, 1285, 713, 2737,
9, 81, 81, 333, 81, 585, 333, 1413, 65, 585, 473, 1733, 237, 1933, 1077, 4337, 37, 333, 333, 1369, 293, 2125, 1129, 4969, 157, 1413, 1285, 5041, 713, 5561, 2737, 11421, ...
The final terms in the rows are A246315.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A246037.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x^2+1/x+1+x+x^2+1/y^2+1/y+y+y^2;
    OddCA(f, 70);
  • Mathematica
    c[f_] := f /. {x -> 1, y -> 1};
    OddCA[f_, M_] := Module[{a = {}, f2, p = 1}, f2 = PolynomialMod[f, 2]; Do[ AppendTo[a, c[p]]; Print[a]; p = PolynomialMod[p f2, 2], {n, 0, M}]; a];
    f = 1/x^2 + 1/x + 1 + x + x^2 + 1/y^2 + 1/y + y + y^2;
    OddCA[f, 70] (* Jean-François Alcover, May 24 2020, after Maple *)

Formula

The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 9*65 = 585. This is a generalization of the Run Length Transform.