cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246337 Numbers n which when expressed in base 16 are palindromes whose digit sum and digit product both divide n.

This page as a plain text file.
%I A246337 #10 May 22 2025 10:21:40
%S A246337 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,273,69905,78129,200979,17903889,
%T A246337 4581298449,1172816597265,1174959919377,300240008712465,
%U A246337 300240176484625,370608786444625
%N A246337 Numbers n which when expressed in base 16 are palindromes whose digit sum and digit product both divide n.
%o A246337 (Python)
%o A246337 from operator import mul
%o A246337 from functools import reduce
%o A246337 from gmpy2 import t_mod, digits, mpz
%o A246337 A246337 = sorted([mpz(n,16) for n in (digits(x,16)+digits(x,16)[::-1]
%o A246337     for x in range(1,16**7)) if not (n.count('0') or
%o A246337     t_mod(mpz(n,16), sum((mpz(d,16) for d in n)))
%o A246337     or t_mod(mpz(n,16), reduce(mul,(mpz(d,16) for d in n))))] +
%o A246337     [mpz(n,16) for n in (digits(x,16)+digits(x,16)[-2::-1]
%o A246337     for x in range(16**7)) if not (n.count('0') or
%o A246337     t_mod(mpz(n,16), sum((mpz(d,16) for d in n)))
%o A246337     or t_mod(mpz(n,16), reduce(mul,(mpz(d,16) for d in n))))])
%Y A246337 Cf. A117228, A246338.
%K A246337 nonn,base
%O A246337 1,2
%A A246337 _Chai Wah Wu_, Aug 22 2014