cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246338 Numbers n which when expressed in base 8 are palindromes whose digit sum and digit product both divide n.

This page as a plain text file.
%I A246338 #11 May 22 2025 10:21:40
%S A246338 1,2,3,4,5,6,7,105,4809,299593,1227264585,1231525449,1495765593,
%T A246338 21734674907255625,128700665796293199,129237637608018639
%N A246338 Numbers n which when expressed in base 8 are palindromes whose digit sum and digit product both divide n.
%o A246338 (Python)
%o A246338 from operator import mul
%o A246338 from functools import reduce
%o A246338 from gmpy2 import t_mod, digits, mpz
%o A246338 A246338 = sorted([mpz(n,8) for n in (digits(x,8)+digits(x,8)[::-1]
%o A246338     for x in range(1,8**6)) if not (n.count('0') or
%o A246338     t_mod(mpz(n,8), sum((mpz(d,8) for d in n)))
%o A246338     or t_mod(mpz(n,8), reduce(mul,(mpz(d,8) for d in n))))] +
%o A246338     [mpz(n,8) for n in (digits(x,8)+digits(x,8)[-2::-1]
%o A246338     for x in range(8**6)) if not (n.count('0') or
%o A246338     t_mod(mpz(n,8), sum((mpz(d,8) for d in n)))
%o A246338     or t_mod(mpz(n,8), reduce(mul,(mpz(d,8) for d in n))))])
%Y A246338 Cf. A117228, A246337.
%K A246338 nonn,base
%O A246338 1,2
%A A246338 _Chai Wah Wu_, Aug 22 2014