cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246394 Nonnegative integers k satisfying cos(k) <= 0 and cos(k+1) >= 0.

Original entry on oeis.org

4, 10, 17, 23, 29, 36, 42, 48, 54, 61, 67, 73, 80, 86, 92, 98, 105, 111, 117, 124, 130, 136, 142, 149, 155, 161, 168, 174, 180, 186, 193, 199, 205, 212, 218, 224, 230, 237, 243, 249, 256, 262, 268, 274, 281, 287, 293, 300, 306, 312, 318, 325, 331, 337, 344
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor((n-1/2)*Pi)}). Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Cos[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &]  (* A062389 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246393 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &]  (* A246394 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &]  (* A246046 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246395 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &]  (* A246396 *)