cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

This page as a plain text file.
%I A246397 #32 Apr 15 2018 04:00:55
%S A246397 2,3,4,5,9,10,12,13,17,25,27,30,31,36,38,39,43,48,52,55,56,61,62,65,
%T A246397 83,92,94,99,100,104,105,109,114,118,126,131,166,168,169,172,183,185,
%U A246397 190,194,196,198,209,224,225,229,231,239,244,257,260,261,263,269,270,272,278,291,296,299,300,302,308,311
%N A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.
%C A246397 Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.
%H A246397 G. C. Greubel, <a href="/A246397/b246397.txt">Table of n, a(n) for n = 1..10000</a>
%p A246397 A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # _Wesley Ivan Hurt_, Nov 14 2014
%t A246397 Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* _Vincenzo Librandi_, Jan 17 2015 *)
%o A246397 (PARI) for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ _Joerg Arndt_, Nov 13 2014
%Y A246397 Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).
%Y A246397 Cf. A060886, A125258, A085398, A124990.
%K A246397 nonn
%O A246397 1,1
%A A246397 _Eric Chen_, Nov 13 2014