cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246417 Homomorphic inverse images of elementary h-ary relations.

This page as a plain text file.
%I A246417 #22 Sep 30 2023 13:07:58
%S A246417 0,0,1,7,36,171,813,4012,25931,342263,6498746,116477549,1839530421,
%T A246417 26071946330,339710531761,4165394873379,50578180795388,
%U A246417 717354862704287,15348610400624113,466529833772501084,15332096138370552335
%N A246417 Homomorphic inverse images of elementary h-ary relations.
%C A246417 Corresponds to r_6(k) in the Rosenberg paper.
%D A246417 E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
%H A246417 Ivo Rosenberg, <a href="http://dx.doi.org/10.1016/0097-3165(73)90058-7">The number of maximal closed classes in the set of functions over a finite domain</a>, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
%H A246417 Ivo Rosenberg and N. J. A. Sloane, <a href="/A002824/a002824_1.pdf">Correspondence, 1971</a>
%H A246417 E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, <a href="/A002824/a002824.pdf">Precomplete classes in k-valued logics. (Russian)</a>, Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
%F A246417 a(n) = Sum_{h^m <= k, h >= 3, m >= 1} (((-1)^h / (m! * (h!)^m)) * Sum_{L=1..h^m} (-1)^L * binomial(h^m, L) * L^n). - _Sean A. Irvine_, Aug 25 2014
%Y A246417 Cf. A002826.
%K A246417 nonn
%O A246417 1,4
%A A246417 _Sean A. Irvine_, Aug 25 2014