This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246458 #14 Jan 25 2016 14:25:04 %S A246458 1,1,1,5,7,7,11,143,715,2431,4199,29393,52003,37145,7429,215441, %T A246458 392863,4321493,7960645,58908773,109402007,407771117,762354697, %U A246458 3811773485,35830670759,19293438101,327988447717,2483341104143,4709784852685,17897182440203,34062379482967 %N A246458 Catalan number analogs for A048804, the generalized binomial coefficients for the radical sequence (A007947). %C A246458 One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from the radical sequence (A007947). %H A246458 Tom Edgar and Michael Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Edgar/edgar3.html">Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. %F A246458 a(n) = A048804(2n,n) / A007947(n+1). %e A246458 A048804(10,5) = 42 and A007947(6) = 6, so a(5)=42/6=7. %o A246458 (Sage) %o A246458 [(1/(prod(x for x in prime_divisors(n+1))))*prod(prod(x for x in prime_divisors(i)) for i in [1..2*n])/prod(prod(x for x in prime_divisors(i)) for i in [1..n])^2 for n in [0..100]] %Y A246458 Cf. A007947, A048804, A048803, A245798, A000108. %K A246458 nonn %O A246458 0,4 %A A246458 _Tom Edgar_, Aug 26 2014