cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246465 Triangle read by rows: T(n,k) = A085056(n)/(A085056(k) * A085056(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 2, 4, 4, 4, 1, 1, 3, 12, 12, 6, 6, 12, 12, 3, 1, 1, 1, 3, 12, 6, 6, 6, 12, 3, 1, 1, 1, 1, 1, 3, 6, 6, 6, 6, 3, 1, 1, 1, 1, 2, 2, 2, 3, 12, 12
Offset: 0

Views

Author

Tom Edgar, Aug 27 2014

Keywords

Comments

We assume that A085056(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the sequence A003557.

Examples

			The first five terms in A003557 are: 1, 1, 1, 2, 1 and so T(4,2) = 2*1*1*1/((1*1)*(1*1))=2 and T(5,4) = 1*2*1*1*1/((2*1*1*1)*(1))=1.
The triangle begins:
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 2, 2, 2, 1,
1, 1, 2, 2, 1, 1,
1, 1, 1, 2, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 4, 4, 4, 2, 4, 4, 4, 1,
1, 3, 12, 12, 6, 6, 12, 12, 3, 1.
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[n/prod([x for x in prime_divisors(n)]) for n in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] # generates the triangle up to q rows.

Formula

T(n,k) = A085056(n)/(A085056(k) * A085056(n-k)).
T(n,k) = prod_{i=1..n} A003557(i)/(prod_{i=1..k} A003557(i)*prod_{i=1..n-k} A003557(i)).
T(n,k) = A003557(n)/n*(k/A003557(k)*T(n-1,k-1)+(n-k)/A003557(n-k)*T(n-1,k)).