cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246466 Catalan number analogs for A246465, the generalized binomial coefficients for A003557.

This page as a plain text file.
%I A246466 #9 Jan 25 2016 14:24:36
%S A246466 1,1,2,1,2,6,12,3,2,2,4,2,4,20,360,45,90,30,60,30,60,60,120,90,36,252,
%T A246466 56,28,56,56,112,7,42,42,84,14,28,28,280,70,140,3780,7560,3780,2520,
%U A246466 2520,5040,630,180,36,216,108,216,24,48,12,24,24,48,72,144,1584
%N A246466 Catalan number analogs for A246465, the generalized binomial coefficients for A003557.
%C A246466 One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from the sequence (A003557), which is n/rad(n).
%H A246466 Tom Edgar and Michael Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Edgar/edgar3.html">Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
%F A246466 a(n) = A246465(2n,n) / A003557(n+1).
%e A246466 A246465(14,7) = 12 and A003557(8) = 4, so a(7)=12/4=3.
%o A246466 (Sage)
%o A246466 D=[0]+[n/prod([x for x in prime_divisors(n)]) for n in [1..122]]
%o A246466 T=[[prod(D[1:m+1])/(prod(D[1:n+1])*prod(D[1:(m-n)+1])) for n in [0..m]] for m in [0..len(D)-1]]
%o A246466 [(1/D[i+1])*T[2*i][i] for i in [0..61]]
%Y A246466 Cf. A003557, A246465, A245798, A000108, A007947, A246458.
%K A246466 nonn
%O A246466 0,3
%A A246466 _Tom Edgar_, Aug 27 2014