This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246469 #10 Jan 09 2025 06:16:52 %S A246469 1,2,4,8,18,27,36,48,54,64,72,96,125,135,162,225,375,432,486,625,648, %T A246469 675,864,972,1225,1250,1323,1350,1575,1701,1715,1875,2250,2646,2835, %U A246469 2916,3375,3528,3645,3675,3750,3969,4116,4375,4536,4725,4860,5145,5488,5832 %N A246469 Given a number of k digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1), consider y = p_(1)^d_(k)*p_(2)^d_(k-1)*…*p_(k)^d_(1), where p_(i) is the i-th prime. Sequence lists the numbers x such that y / x is an integer. %C A246469 a(n) = x such that A189398(x) / x is an integer. %H A246469 Paolo P. Lava, <a href="/A246469/b246469.txt">Table of n, a(n) for n = 1..1000</a> %e A246469 x = 48 -> y = 2^4*3^8 = 104976 and 104976 / 48 = 2187. %e A246469 x = 972 -> y = 2^9*3^7*5^2 = 27993600 and 27993600 / 972 = 28800. %p A246469 with(numtheory):P:=proc(q) local a,b,k,n; %p A246469 for n from 1 to q do a:=n; b:=1; %p A246469 for k from 1 to ilog10(n)+1 do b:=b*ithprime(ilog10(n)+2-k)^(a mod 10); a:=trunc(a/10); %p A246469 od; if type(b/n,integer) then print(n); fi; od; end: P(10^9); %Y A246469 Cf. A054842, A189398, A246468. %K A246469 nonn,base,easy %O A246469 1,2 %A A246469 _Paolo P. Lava_, Aug 27 2014