A246475 Number of length n+3 0..4 arrays with no pair in any consecutive four terms totalling exactly 4.
172, 484, 1376, 3904, 11020, 31104, 87888, 248568, 702724, 1985932, 5612156, 15862556, 44837136, 126731180, 358188232, 1012377900, 2861418780, 8087637712, 22859103016, 64609341900, 182613147216, 516142417472, 1458837964296
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....4....0....0....1....2....3....3....3....3....1....3....0....0....4....1 ..4....4....0....3....1....0....4....4....2....3....1....0....0....0....2....2 ..3....1....0....3....0....3....2....4....0....4....1....3....0....0....3....1 ..4....2....1....3....1....3....4....4....0....4....4....0....2....3....4....1 ..4....1....1....0....0....0....3....1....3....3....1....3....1....3....4....4 ..4....4....2....2....2....0....4....4....0....4....1....0....0....3....4....4 ..4....4....4....3....1....0....4....1....2....4....1....0....1....2....4....2 ..3....4....1....3....0....3....4....2....0....2....4....2....1....3....4....3 ..2....4....4....0....0....3....4....1....3....4....2....3....1....4....4....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A246479.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-3) + 14*a(n-4) + 3*a(n-5) + 6*a(n-6) + a(n-8) + a(n-9).
Empirical g.f.: 4*x*(43 + 35*x + 102*x^2 + 245*x^3 + 80*x^4 + 99*x^5 + 7*x^6 + 21*x^7 + 16*x^8) / (1 - 2*x - x^3 - 14*x^4 - 3*x^5 - 6*x^6 - x^8 - x^9). - Colin Barker, Nov 06 2018